# 高效率横向电激励连续 CO。激光器的研究

# 刘东华 韩晏生 李 锋 李再光

(武汉华中工学院激光研究所)

提要:报道一种工业用高气压封闭形横向电激励二千瓦级连续 CO2 激光器。连续运行13小时,输出功率高于2.3kW,能量转换效率大于17%。研究了放电特性、输出特性;测量了在不同放电条件下的电子温度和电子浓度。

## Study on efficient transverse electric excitation CW CO2 laser

Liu Donghua, Han Yanseng, Li Feng, Li Zaiguang

(Laser Institute, Huazhong University of Science and Technology)

Abstract: A high pressure transverse electric excitation sealed-off 2 kW CW CO<sub>2</sub> laser with high efficiency for industrial use has been developed. Its output power is over 2.3kW with an energy conversion efficiency of higher than 17% during the continuous operation of 13 hrs.

The discharge and output power characteristics have been investigated and the electron temperature and density have been measured under various discharge conditions.

## 一、总体结构

目前,流动式电激励大功率连续 CO。激 光器的总体结构形式主要有两种:

一种是轴流式,它是一种管式结构;另一种是横流式,它是一种箱式结构。后者气流方向与激光方向、放电方向相互垂直。这种方式散热效果最好,有利于激光器朝大功率、高效率的方向发展<sup>[1]</sup>。

本激光器采用了三轴正交式总体结构。它是由封闭箱体、谐振腔、压气机、热交换器、充、排气装置及高压电源等部分组成。

图1是激光器主体外貌。主体部分是一个由不锈钢制成的箱体,其内部结构如图2

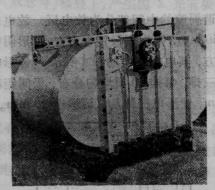



图 1 激光器主体外貌

所示。 箱体内部装有谐振腔、压气机和热交 换器等部件。

主体部分的密封性能良好,真空度可抽到 10<sup>-2</sup> Torr 以上,气体封存时间可超过 500

收稿日期; 1985年11月19日.

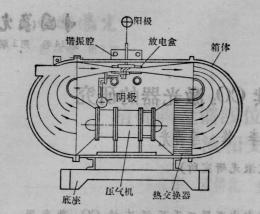



图 2 激光器的主体结构示意图

小时, 平均每天漏气量和内部材料放气量约为 0.27 Torr。

谐振腔装在横跨箱体的光桥上, 两端分别安有全反射镜和输出镜, 采用波纹管与箱体隔离,如图3所示。

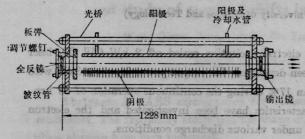



图 3 谐振腔和放电区的结构示意图

谐振腔的中间部分为放电区,放电长度为 950 mm,平板阳极置于上方,针形阴极置于下方,其电极结构如图 4 所示。针形电极共分三排,每排 80 根均匀分布,极间距离为 35 mm,针形电极伸入气流喉道 10 mm。为

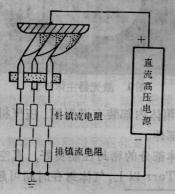



图 4 电极结构示意图

提高放电的稳定性,在每根针电极的放电支路中,串联一个高值电阻,每排各针电阻的另一端并联后,再串接一个低值电阻,用以调节各排放电电流的大小。

#### 二、放电特性和电子温度

采用钨、钼两种针形电极,在不同的放电条件下,分别进行了放电特性的研究。并且,利用自制的双探针自动测量装置,测量了激光器放电等离子体的电子温度<sup>[23]</sup>。

当采用单排钨针电极对平板铜阳极放电时,在气体成分为1CO<sub>2</sub>: 7 N<sub>2</sub>: 20 He, 气温为20°C, 流速为50 m/s, 极间距离为35 mm的条件下,其极间电压、输入电功率随气压和放电电流的变化关系,如图5 所示。在正常辉光放电区内,每根钨针电极的最大放电电流为35 mA,当气压为100 Torr 时,单排钨针电极的最大输入功率为9.24 kW。

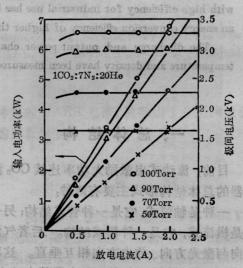



图5 单排钨针电极的放电特性

采用钼针电极对铜板阳极放电时,在相同的放电条件下,其极间电压要比钨针电极的极间电压低些,如图 6 所示。因而,在相同的放电条件下,采用钼针放电的 E/N 值较小,有利于改善放电稳定性和提高激光器的效率。

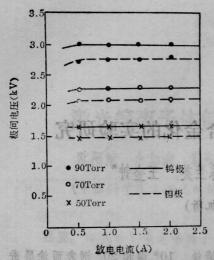



图 6 钨、钼针形电极放电特性的比较

在气体成分为 $1 \text{ CO}_2$ :  $7 \text{ N}_2$ : 20 He 和 $1 \text{ CO}_2$ :  $9 \text{ N}_2$ : 20 He, 气压为 90 Torr, 流速为 50 m/s, 气温为 20 °C 的条件下, 采用第一、二排各 40 根钼针电极并联放电时, 电子温度及浓度与电流的关系如图 7 所示。

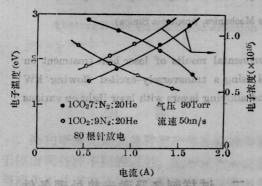



图 7 电子温度及浓度与电流的关系

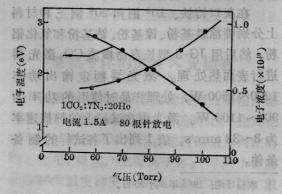



图 8 电子温度及浓度与气压的关系

由图可见,随着放电电流的增大,放电等 离子体的电子温度下降,电子浓度增加。

在上述放电条件下,当气体成分1 CO<sub>2</sub>: 7 N<sub>2</sub>: 20 He,且保持放电电流为1.5 A 时,电子温度及浓度与气压的关系如图 8 所示。随着气压升高,电子温度下降,电子浓度增加。

#### 三、各排输入功率密度的分布

采用多排针形电极并联放电时,由于前排电极放电对后排电极的放电起预电离的作用,因而,沿气流方向,各排针电极的放电电压逐渐降低,各排的输入功率密度和放电参数 E/N 值也不相同。合理地选择各排的输入功率密度,调节各排放电的 E/N 值,可以显著地提高激光器的效率和改善放电稳定性<sup>[3,4]</sup>。

在气体成分为  $1 \text{ CO}_2$ :  $7 \text{ N}_2$ : 20 He, 气压为 90 Torr, 流速为 50 m/s, 气温为  $20 ^{\circ}\text{C}$  的条件下, 三排钼针电极并联放电时, 其各排功率密度和 E/N 值的分布如图 9 所示。

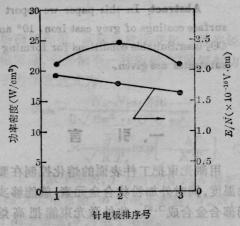



图 9 各排功率密度和 E/N 值的分布

第一排针电极放电主要起预电离作用,为使该排放电均匀、稳定,应使该排的输入功率密度最低为宜。第二排针电极为主放电区,输入功率密度最高,现已达到约25W/cm³,第三排针电极的输入功率密度可适当减

(下转第44页)

| 腔 型  | 输出能量(mJ) | 发散角(mrad)<br>8 |         |
|------|----------|----------------|---------|
| 平行平面 | 7.2      |                |         |
| 平凸   | 6.4      | 单透镜补偿          | 望远镜离焦补偿 |
|      |          | 3              | 2       |

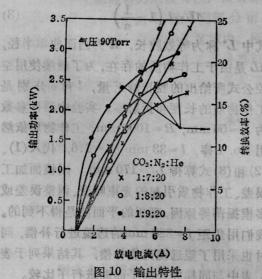
这里可以看出,在同样条件下,平凸腔经 补偿后光束发散角比平面腔大为改善。实验 中所用的望远镜仅2.7倍。

按照上述器件参数计算可知: 当望远镜目镜焦距  $f_o$  < 20 mm 时, 离焦量  $\Delta f$  < 1.7 mm, 所以, 当平凸腔用于由激光器和望远镜组成的发射系统时, 就可以拿这个望远镜进行离焦补偿, 不增加任何元件和系统尺寸,在调节上也没有困难。

## 三、研制结果

在上述实验的基础上,我们研制成功一种小型 NdPP 脉冲激光器,室温下自然冷却每分钟可以发射 10 次,输入能量 5.9~8.6 J输出单峰脉冲,单脉冲能量 17 mJ,脉冲宽度(半功率点)4 ns,峰值功率大于 4 MW,用套孔法测量发散角: 4.2 mrad 通过总能量的90%, 2.5 mrad 通过总能量的68%,器件外形尺寸15×22×68(mm)³,重量35 g(不包括电源)。

#### 参考文献


- [1] 廉汝林等,《激光与红外》, 1980,No. 12, 28.
- [2] S. R. Chinn et al.; Appl. Phys. Lett., 1977, 31, No. 3, 178~180.
- [3] 赫光生,雷仕湛;《激光器设计基础》,上海科学技术出版社,1979,40~45.

(上接第51页)

小, 各排的放电参数 E/N 值从 1.92× 10<sup>-16</sup>V·cm<sup>2</sup> 下降到 1.64×10<sup>-16</sup> V·cm<sup>2</sup>。

## 四、输出特性

激光器的输出特性如图 10 所示。在气



压为 90 Torr, 流速为 50 m/s, 气温为 20℃ 的情况下, 改变混合气体中 CO₂、N₂和 He的比例, 得到了三组输出特性的曲线。

适当地增加混合气体中的含 N。量,可以显著地提高激光器的输出功率和效率。本激光器工作气体的最佳混合比为1CO2:9N2:20 He。采用这种气体的比例,在 90 Torr 的气压下,流速为 50 m/s,放电区上游气温为20°C 时,激光器的输出功率可达 2900 W,电光转换效率可达 20%。连续运转时间为4小时。

## 参考文献

- [1] 永井治彦ほか; 大出力炭酸かスレーザー, 《三菱电机技报》, 1981, 55, No. 10, 55~59.
- [2] 李同宁;华中工学院研究生论文, 1984, 10.
- [3] R. B. Lancashire et al.; Opt Engineering, 1977,
  16, No. 5, 505~512.
- [4] R.H. Bullis et al.; AIAA J., April, 1972, 407~ 414.